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A wake source model for bluff body potential flow 
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Department of Mechanical Engineering, University of British Columbia 
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A theory is presented for two-dimensional incompressible potential flow ex- 
ternal to a symmetrical bluff body and its wake. The desired flow-separation 
points are made the critical points of a conformal transformation to a complex 
plane in which surface sources in the wake create stagnation conditions at the 
critical points. The stagnation streamlines then transform to tangential separa- 
tion streamlines in the physical plane, with separation at  the desired pressure. 
The position and strength of the sources are determined by the requirements of 
separation position and pressure coefficient. The flow inside the separation stream- 
lines is ignored and base pressure is assumed constant at the separation value. 
Features of the theoretical model include a finite wake width, a pressure distribu- 
tion on the separation streamlines decreasing asymptotically towards the free 
stream value at  infinity and a simple analytic expression for the pressure dis- 
tribution on the body. Comparisons of the theory with experimental data and 
with other theories are presented for the normal plate, the circular cylinder, 
the 90" wedge, and the elliptical cylinder. Although simpler to apply than the 
other theories, the present theory produces at  least as good agreement with the 
experimental data. 

1. Introduction 
To date there are no theories which can predict or describe all of the important 

features of flows past bodies whose shapes cause flow separation and the forma- 
tion of a broad wake. The reasons lie in the complexity of the wake dynamics, 
including the formation of organized vortex systems, and in the lack of know- 
ledge of the link between wake and separation conditions. As a result, theoretical 
models of such flows include some empiricism. 

Flows normal to long bodies of constant bluff cross-section are of considerable 
interest and importance, and several empirical facts about them are relevant to 
the creation of theoretical models. First, if the incident flow is uniform, the time- 
averaged flow quantities, such as velocity and surface pressure distribution, are 
reasonably two-dimensional except near the ends of the body span. Secondly, 
the separating shear layers are thin and well-defined close to the body, and the 
flow external to these shear layers and to the thin boundary layer on the body 
surface upstream of separation is irrotational. Thirdly, the time-averaged base 
pressure over the body surface exposed to the wake is nearly constant for most 
shapes. This base pressure is always lower than the free-stream pressure. 
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These facts suggest the use of a two-dimensional irrotational flow model, 
conveniently treated in the complex plane, to represent time-averaged flow 
conditions near the body, and particularly its surface loading. Previous models 
meeting these criteria have employed hodograph methods, in which the separa- 
tion shear layers are replaced by free streamlines bounding the external irrota- 
tional flow. The position of these streamlines is initially unknown but the velo- 
city along them is specified in magnitude and/or direction, and, with the usual 
inviscid boundary condition on the body surface upstream of separation, the 
external flow problem is completely specified and can be solved using conformal 
transformations of the complex velocity and the complex potential planes, with 
the complex potential as fundamental independent variable. These models do 
not involve the space actually occupied by the wake, and it is assumed that the 
body surface exposed to the wake is a t  the constant base pressure given by the 
separation value. Two examples of this class of theories which have proved useful 
and realistic were developed by Roshko (1954) and Woods (1955). In  the present 
theory complex variable methods are used differently. 

I 

1 
FIGURE 1. Physical and basic transform planes. 

2. General theory 
Consider two-dimensional, incompressible, irrotational steady flow, uniform 

at infinity, past a body symmetrical with respect to the incident flow, and with 
symmetrical separation a t  points S,, S, shown in figure 1, in the z-plane. The 
upstream part S, AX, of the body contour C is mapped conformally from the 
corresponding part of a circle y in the c-plane by the analytic function, 

2 =fa (2.1) 

which preserves the direction, but not necessarily the magnitude, of the velocity 
at infinity, and for which the points S,, S, are critical points, a t  which the deri- 
vative f'(c) has simple zeros. Accordingly, angles of intersection of curves are 
doubled a t  S,, S ,  in the z-plane and the complete circle y is mapped onto the slit 
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S,AS,BS,. The part of the actual body contour C downstream of separation 
S, DS, lies in the wake and is ignored. 

In the <-plane, the basic flow past the circle y is the familiar combination of 
uniform flow in the direction of the real axis plus flow from a suitable doublet at  
the origin. To this is added the flow from surface double sources of strength 2Q 
symmetrically located at  angles 2 S on the contour y, and from their image sinks 
at the origin. (The combination of a double source on the circle and a sink at  the 
centre satisfies the boundary condition on the circle. It is the limiting case of the 
combination of a source outside the circle and its image source and sink inside.) 
The complex potential of the resulting flow is 

F( 5)  = J' [+ - + - [In (5  - Reu)  + In (5- R e-i8) - In 51, ( 2 . 2 )  ( 3 : 
and the complex velocity in the <-plane is 

The upstream flow from the surface sources creates symmetrical surface stagna- 
tion points and these are located at  S, and S, by setting w( 6) = 0 there, from which 
a relation between Q and S is obtained. Because of the doubling of angles at  the 
critical points, the stagnation streamlines leaving S ,  and S, in the [-plane become 
tangential separation streamlines at  S,  and S ,  in the z-plane. Separation is as- 
sumed to occur a t  the empirically given base pressure pb, and this determines 
the complex velocity in the z-plane at  S, and S,, through Bernoulli's equation, 

P + t P [ W ( 4 1 2  = pm+&pU2, 

or 

where C, is the pressure coefficient. With the complex potentials equated at 
corresponding points of the z- and <-planes, complex velocity w(z) is given in 
terms of w(5) by 

and, since both w([) and f '(6) have simple zeros at  S, and S,, w(z)  is finite there and 
is equated to the value given by 

This gives a second relation between Q and S, which are thereby determined. 
The surface pressure distribution over the upstream surface S,AS, can now 
be determined from (2.1), ( 2 . 5 ) ,  and (2.4). The flow inside the separation stream- 
lines is ignored and the pressure over the downstream surface, s, DS, is assumed 
constant zit pb. The drag D is given by direct integration, 
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or, in terms of the drag coefficient, 
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The shape of the separation streamlines is given by solving for the 6 co-ordi- 

(2.8) 
nates satisfying 

and then using (2.1) to find the corresponding z co-ordinates. The pressure 
distribution along these streamlines is then found from (2.5) and (2.4). The 
asymptotic downstream spacing H of the separation streamlines is given by the 
continuity equation for the flow from the surface sources 

Im [ R 3 1  = -t Q, 

2Q = U H .  (2.9) 

In  the following sections of the paper, some examples are worked out and com- 
pared with other theoretical and with experimental results. 

3. Normal flat plate 
The normal flat plate shown in figure 2 is mapped from the circle y in the 5- 

plane of figure 1 by the Joukowsky transformation 

where 

and, since separation occurs at the edges of the plate, 

a = in. 

Since f ’ (<)  = 1 at infinity, V = U ,  and w(5) on y is given from (2.3) by 

Equating (3.2) to zero for 0 = 2 &r gives 

Q = &nUh cos 8. (3.3) 

It is convenient to express w(z)  on C in terms of the parametric variable, 0, so 

-isin8 
(3.4) 

2 cos 6- cos 0 
i that wB u - - --[sin8+&cos6 cos0 

after some rearrangement, which eliminates the indeterminacy at  0 = f in. 
As a result, (2.6) gives 

The pressure distribution on the front of the plate is given from (2.4)) (3.4) and 

see6 = k.  (3.5) 

(3.1), by sin2 0 C,(O) = 1- 
(cos s - cos 0)Z ’ 

y = +h sin 8, 
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and C, is given by (2.7), 

] + tan2 8. (3.7) 
cos 26 [ 1 + cos S+ sin6 
sin6 l+cos6-sinS 

C, = 3-ncosS+--;---ln 

(2.8) is transcendental and the co-ordinates of the separation streamlines are 
found from it by trial, after which the variation of C, along these streamlines is 
found using (2.3), (2.5) and (2.4). The asymptotic downstream spacing of the 
separation streamlines is given from (2.9), (3.3), and (3.5) as 

H = (n /k)h .  (3.8) 

H 

FIGURE 2. Normal flat plate. 

Figures 3, 4 and 5 show a comparison, for the same CPb, of values calculated 
from the above equations with values given by the notched hodograph theory of 
Roshko (1954) and experiments of Page & Johansen (1927). I n  figure 3, the two 
theoretical curves for C, are indistinguishable and their agreement with the 
experimental points is good. The three values of C, agreed to within 0.3 yo. In 
figure 4 the two theoretical separation streamlines lie quite close together near the 
plate, and both are near the middle of the experimentally determined shear 
layers. However, the asymptotic downstream spacing H given by the present 
theory is appreciably larger than the constant spacing given by Roshko’s 
theory. In  figure 5, all three C, variations show a similar trend from C,, at the 
plate to zero far downstream, but the theoretical curves approach zero more 
rapidly. It should be noted that the experimental values of figures 4 and 5 
are time averages of strongly periodic phenomena, because of the wake vortex 
formation. 

4. Circular cylinder 

4.1. Xurface loading and streamline shape 

For the circular cylinder of figure 6, the part of the surface S,AS, upstream 
of the separation points is mapped as part of the circular arc slit S,  AS,  BS,  from 
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FIGURE 3. Pressure distributions on normal flat plate. --, present theory, C, = 2.134. 
_ _ _ _  , Roshko (1954) theory, C, = 2.128. A, 0, Fage & Johansen (1927) experiments, 
C, = 2-13. 

FIGURE 4. Separation streamline shapes for normal flat plate. -- , present theory, 
_ _ - _  , Roshko (1964) theory. m, Fage & Johansen (1927) shear layer measurements. 
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the circle in the <-plane of figure 1 by the transformation, 

1 
z =f(C)  = C-cota-- 

<-cotor’ 

where the radius of the circle in the <-plane is taken to be 

R = CSCLX, 

and angle a in the <-plane is related to the separation angle /3, in the z-plane, 
assumed known empirically, by 

583 

(4.1) 

a = +(n-/3,). (4.2) 

I 
! 

0 

FIGURE 5. Pressure distribution on separation streamlines for normal flat plate. -, 
present theory. - - - -, Roshko (1954) theory. - + -, Fage & Johansen (1927) experi- 
ments. 

The diameter of the circular cylinder is given by 

h = 4 csc p,. (4.3) 

Since f’(<) = 1 at infinity, V = U as in the previous case, and w(6) on y is given 
again by (3.2). Here, however, (3.2) is equated to zero for 8 = & a, with the result 
that 

Again, w(z) on C is conveniently expressed in terms of 8 as parametric variable, 
so that, with dx/dc on C given by 

Q = ~ ~ T U C S C ~ ( C O S S - C O S ~ ) .  (4.4) 

the magnitude of the surface velocity over S,AS, is given, after some trigono- 
metric manipulation, by 

1 w(x)l 1 lw(<)1 sin 8( 1 - 2 cosa cos 8+ cos2a) 
(4.5) u -mrr= cos 6 - cos 8 
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Again, the indeterminacy at  8 = rt a has been eliminated by the rearrangement of 
terms, and (2.6) gives sin3 a: 

k .  COSS = cosa+-- (4.6) 

The pressure distribution over S,AS, on C is given by substituting (4.5) in 
(2.4), and the angular position p on C corresponding to 6' on y is given from 

sin 8. (4.7) 1 sec a - cos I3 i &(see a + cos a) - cos 6' 
sin /3 = cos a 

(4.1) by 

C, is determined from (2.7) using (4.5) and (4.7) since 

y = &h sin p. 
The integration is routine but lengthy, and the result is 

where C, = (1 - C,, + E )  sinp,+ [GlnJ-  L(n+/3,)] sin&ps, (4.8) 

1 
E = - - - - [ 2 4 ~ ~ , ~ ~ - 6 ~ ( 3 + 5 ~ ~ ) , ~ ~ + ( 6 +  ~ ~ U ~ + ~ U * ) , U - U ( ~ - ~ U ~ - U * ) ] ,  

[ 8 ~ ~ , ~ ~ - 6 ~ 4 1 + 1 ~ ~ ) , ~ ~ + 2 ( 1 - 2 2 ~ ~ ) , / ~ ~ + ~ ( 3 + 5 ~ ~ ) , ~ - ( 1 + ~ ~ ) ] ,  (4 = ~ ____ 

3(P - 4 

( 1  -P2P 

2 

L = 2[4u2p3 - 3 ~ (  1 + u2)p2+p+ ~ 7 ,  
and p = cos 6, u = sin+/3s. 

The co-ordinates of the separation streamlines are found as in the previous case 
from (2.8). Their asymptotic downstream separation is given from (2.9), (4.2), 
(4.3), (4.4) and (4.6) as H = (7r/2k) sin p,( 1 + cos p,) h. (4.9) 

4.2. Conditions at separation 

Before comparing the present theory with other theories and with experiment it 
may be useful to examine conditions a t  separation more closely. The separation 
angle /3, and the base pressure coefficient C,, were specified empirically and, while 
the theory gives separating streamlines which are tangent to the cylinder sur- 
face at  separation, there is no specification of their curvature there. Knowledge 
of the curvature is important because of the possibility of physically inadmissible 
solutions in which the predicted streamlines intersect the cylinder surface 
downstream of separation. 

Information on streamline curvature just after separation can be obtained 
readily by examining aC,/ap on the wetted cylinder surface near S,  (for a general 
discussion see Woods 1961, Q 11.6). On S,AS2, C, and p are both functions of 8, so 

(4.10) = -2k 
that ( d W )  (Iw(z)l/WIse dC,ld%2 "cr; = 

w s, dpldoi;, dPP6' I 51, 
From (4 .7)  it is easily shown that @/d8 is negative on S,AS, and 

(4.11) 
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(4.12) 

It 
positive infinite, k < 8 sin p,, 

k = Ssinp 2 S, 

negative infinite, k > 8 sin p,. 

Z 

h H 

FIGURE 6 .  Circular cylinder. 

The finite value can be found by applying L’Hospital’s rule to (4.10), with the 
result 

(4.13) 

sinp, = $k. 

If aC,/aplSz is negative infinite, it can be shown (see Woods 1961,311.6) that the 
separation streamline curvature at  S2 is infinite and convex as viewed from 
outside the wake, so that the streamline would intersect the cylinder. Thus, any 

(4.14) 
solution with 

sinp, < $k 
is physically inadmissible. 

4.3 Comparisons 

Figures 7, 8, and 9 show comparisons, for the same values of CPb, of results of the 
present theory with theoretical results of Roshko (1954) and Woods (1955) and 
with experimental results of Roshko (1954, 1961) and Bearman (1968). 
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FIGURE 7. Pressure distributions on circular cylinder. --, prcscnt theory. .--.- , present 
theory with finite curvature condition. - - - - , Roshko (1954) theory. ......, Woods (1955) 
theory. , Roshko (1954) experiments, Reynolds number 1.45 ( a, Bearman (1968) 
experiments, Reynolds number 2-13( 

FIGURE 8. Pressure distributions on circular cylinder. -, present theory. - - - -, Woods 
(1955) theory, M = 0. ......, Woods (1955) theory, &I = 0.25. V ,  Roshko (1961) experi- 
ments, M = 0.25, Reynolds number 8~4(10)~.  
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In  figure 7, surface pressure distributions are shown for cases representing 
two values of Cpb. The first of these, C,, = - 0.96 (k = 1.40), represents the sub- 
critical Reynolds number range in which laminar separation occurs with /3, & 80". 
The experimental points are from Roshko (1954), and his theoretical curve is also 
given. His method does not choose p, empirically, but assumes that the streamline 
curvature at separation is finite and equal to that of the cylinder, thereby deter- 
mining p, as a function of k. For k = 1.40 this theory gives /3, & 62', much less 
than the experimental value, so that the theoretical curve is inaccurate near 
separation. The present theory with condition (4.13) applied corresponds to 
finite streamline curvature at  separation, which occurs at  p, = 69.0", and the 
pressure distribution so determined is plotted on figure 7. It is seen to agree 
quite closely with Roshko's curve, and is similarly inaccurate near the actual 
separation point. 

If the finite curvature requirement is abandoned and p, is chosen empirically 
as 80', the present theory gives good agreement with the experimental points. 
The theory o f  Woods (1955) was also calculated for this case, and the two theo- 
retical curves are indistinguishable. 

The other value of  base pressure coefficient, C,, = - 0.38 (k = 1*175), repre- 
sents the critical Reynolds number range in which the usual pressure distribu- 
tion, in smooth incident flow, is complicated by the presence of laminar separation 
bubbles. The experimental points presented here, however, were obtained by 
Bearman (1 968) in a turbulent flow produced by upstream grids, and the turbu- 
lence appears to have eliminated the bubbles, producing a smooth distribution 
suitable for the present purpose. The present theory and that of Woods are 
calculated for /3, = 117.5" and the plotted curves are seen to be in good agreement 
with each other and the experimental points. (In comparing the two theories it 
was useful to choose the same p8. However, Woods' theory would produce better 
agreement with the experimental points if /3, were reduced slightly.) 
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Figure 8 shows pressure distribution for C,, = -0.86, representing the high 
transcritical Reynolds number range. The experimental points are from Roshko 
(1961), and theoretical curves are calculated for p, = 104'. The present theory 
shows good agreement except near the suction peak, which is underestimated. 
It seemed probable that this discrepancy was caused largely by compressibility 
effects, since the free stream Mach number M in Roshko's experiment was 0.25. 

The present theory is for incompressible flow only, but Woods' theory applies 
to subsonic flow, and was therefore calculated for both M = 0 and M = 0-25. 
The two curves for M = 0 have the same good agreement as in figure 7 ,  while the 
curve for M = 0.25 tends to verify that compressibility effects caused the high 
experimental suction peak. 

Figure 9 gives separation streamline shapes calculated by the present theory 
for the three types of separation considered in figures 7 and 8. (A slightly different 
separation angle, p, = 120', was used for the case of critical separation.) It can be 
seen that the streamlines do not intersect the cylinder surface downstream of 
separation. In all cases the value of aC,/a/31,2 is positive infinite, so that (Woods 
1961, $11.6) the curvature of the streamlines at  separation is infinite and concave 
as viewed from outside the wake. This is also true of the examples of Woods' 
theory presented in figures 7 and 8. 

For the three types of separation, drag coefficients calculated by the present 
theory agreed with measured values within 6; yo. In  the next two sections of the 
paper, the theory is applied, for pressure distribution only, to two other sym- 
metrical shapes. 

5. Ninety-degree wedge 
For the 90" wedge of figure 10 a different mapping is more useful. The upper 

half <-plane, also shown in figure 10, is mapped on the slit upper half z-plane, 
with corresponding boundaries NAS,BN, by the Schwarz-Christoffel transforma- 
tion 

Only the upper half planes need be considered, by symmetry. (This method could 
also have been used for the normal flat plate.) (5.1) can be integrated to give 

dz/d< =f'(<) = K ( C +  1)-&<(<- 1)-g. (5.1) 

and the scale factor K is evaluated by setting 

h 
In cot Qn + J2 - in 

with the result that K =  (5.3) 

The flow in the upper half z-plane separates at the corner S,, and, for the flow 
in the <-plane, a double source on the real positive axis at  

<=,< 1 

will permit the location of a stagnation point at S,. Again, the mapping function 
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derivativef'(g) has a simple zero at  S,, so the tangential separation condition in 
the x-plane is satisfied. The complex potential F(<) is given by 

P(C) = V<+ (Q/n) ln(C-~)~  (5.4) 

Q 1  w(C) = V+- -. n C-s and the complex velocity 

Y 

b 4 

FIGURE 10. 90" wedge and transform plane. 

Heref'(<) = K at infinity so that 

If (5.5) is equated to zero for < = 0, 

V = KU.  

Q = TKUC, 

and, on the wetted surface of the wedge AS,, 

(5.5) 

Again, the determinacy at  5 = 0 has been eliminated directly, and application 
of (2.6) gives 

E = Ilk. (5.9) 
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By (2.4), (5.8) and (5.9), the pressure distribution on wetted surface AS,  is 
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given by 

with the corresponding 2 co-ordinates given by (5.2) and (5.3). 
Figure 11 compares, for the same value of Cpa, theoretical Cp-distributions 

by the present method and that of Roshko (1954)  with experimental values by 
Slater (1969). The two theoretical curves are indistinguishable, and both agree 
quite closely with the experimental values. It should be noted that the experi- 
ments were not actually performed on a wedge, but on a simulated structural 
angle section 3 in. by 3in., with legs of rectangular section *in. thick, as shown in 
figure 11. 

6. Elliptical cylinder 
The elliptical cylinder of eccentricity e* in the 2'-plane of figure 12 is mapped 

from the circular cylinder in the x-plane of figure 6 by the combination of a 
Joukowsky transformation, expansion and translation, 

1 
r ' (  + z sin p, - cos b,q) ' 2' = r' ($2 sin p, - cos p,) + ( 6 . 1 )  

where 

Since S,, S ,  are not critical points of (6. l ) ,  angles are preserved there, and stream- 
lines which leave the circular cylinder in the x-plane tangentially a t  s,, 8, 
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map onto streamlines which leave the elliptical cylinder in the 2‘-plane tangen- 
tially at  S,, S,. Since the problem for the circular cylinder was solved in 5 4, the 
present problem reduces to choosing the base pressure parameter k in the circular 
cylinder solution, so that the corresponding parameter for the elliptical cylinder, 

Ic‘ = (1 - C& 

has the correct empirical value. The required relation is obtained from 

Since dz’/dz = +r’ sin p, at infinity, 
TT 

or 

If (6.1) is evaluated for points on S,AS,, where 

x = 2 cot ps + +h ei(n-fi, 

then 

and, at  S,, 

where Iw(z)l/U is given by (4.5), using (4.2), (4.6), and (4.7). 
For a given ellipse, r’ is known and k‘ and p,’ are given empirically. p, and k 

are then determined from (6.6) and (6-4) and the pressure distribution on the 
wetted surface of the ellipse can then be found from (6.7) and (6.5). 

As for the circular cylinder, the streamline curvature at  separation from the 
elliptical cylinder is important, and again aC,/a/3’ls, cannot be negative infinite 
or the streamline will intersect the cylinder. Because of (6.7) and (4.14) th’ is means 
that solutions with k > 4sinps 

or 

are physical inadmissible. 
In figure 13 a comparison is made, for an elliptical cylinder of e* = 0.60, of 

two C, distributions, calculated by t,he present theory for different assumed 
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values of Pi ,  with experimental values obtained by Wiland (1968). The agree- 
ment of the curve for & = 80" with the experimental points is good except for one 
point, which may be a bad point. For this case 

and 

k' = 1.305, 

so that although (6.8) is not satisfied, there is not much margin. In fact, when the 
theory was applied to another elliptical cylinder, with e* = 0.80, also tested by 
Wiland, although k' was less and Pi about the same, the reduction in r' was large 
enough that (6.8) was satisfied and the theoretical solution was inadmissible. 

7. Concluding remarks 
The present theory appears to give at  least as good agreement with experiment 

as other separated potential flow theories, and it has the advantage that it is 
simpler to use. This advantage is considerable for bodies with curved surfaces, 
which are less amenable to hodograph methods. For example, Woods' (1955) 
theory for the circular cylinder requires an iterative, numerical solution of a 
difficult integral equation. The degree of empiricism in the present theory is the 
same as in other theories, in that one empirical parameter, the base pressure 
coefficient, is needed for shapes with separation at convex corners, such as the 
normal plate, while two parameters, the base pressure coefficient and the sepa- 
ration position are needed for continuous curved shapes, such as the circular 
cylinder. The criterion of finite streamline curvature at separation, which would 
link these two parameters for curved shapes, does not appear to lead to realistic 
results. 

The method can readily be extended to other symmetrical shapes whose 
wetted surfaces can be mapped conformally onto the wetted surface of the circu- 
lar cylinder of figure 6, as was done for the elliptical cylinder. However, as for the 
thinner elliptical cylinder mentioned in 3 6, the theoretical solutions for relatively 
thin bodies may prove to be physically inadmissible. 
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